Remote sensing images used for aggregation of the scalar roughness, z_{0t}

Niels Otto Jensen*, Charlotte Bay Hasager* and Albert Olioso*
*Riso National Laboratory, Wind Energy Department, Roskilde, Denmark
* INRA Bioclimatologie, Domaine Saint-Paul, Avignon, France

OBJECTIVES

To calculate the area-averaged roughness for scalar transport (z_{0s}) and for momentum transport (z_{0m}) directly from a two-dimensional (horizontal domain) atmospheric flow model.

To compare the K_B value given as $K_B = (z_{0s} + z_{0m})$ to values in the literature.

To validate the maps of surface sensible heat flux model results to in-situ sensible heat flux observations in various fields through a growing season.

AGGREGATION METHOD

Calculation of the sensible heat flux maps in heterogeneous terrain is done by use of a new version of a surface-flux aggregation model. The model is a physically-based model that takes the surface roughness, surface temperature and leaf area variations into explicit account. The advantage of this new model version is that the ratio between the roughness for momentum and for scalar is not known to account. Instead it is directly calculated by the model.

The new aggregation model concept is depicted (figure 1) and the inputs are:

- remote sensing surface temperature maps
- remote sensing and cover maps (figure 2)
- remote sensing leaf area index (LAI) maps
- surface temperature
- wind speed and directions
- the leaf area index maps are from POLDER NDVI and neural network methods (Weiss et al. 2002).

The new aggregation model concept is depicted (figure 1) and the inputs are:

- remote sensing surface temperature maps
- remote sensing and cover maps (figure 2)
- remote sensing leaf area index (LAI) maps
- surface temperature
- wind speed and directions
- the land cover map is assigned relevant roughness values per land cover type and the water roughness is a function of wind speed (Charnock’s equation). A set of equations per land cover type define the relationships between z_{0s} and LAI. The maps of friction velocity, u_*, and temperature scalar, β, are calculated through iteration including the Monin-Obukhov stability functions. From the u_* and β maps, the effective values of $<z_{0s}>$ and $<z_{0m}>$ are calculated and sensible heat flux map $H=H(x, \beta)$ (in W m$^{-2}$) (figure 3).

VALIDATION STUDY

The aggregation model is validated to field flux observations in the Alpilles area, France. A land cover map of Alpilles is shown. The inputs to the model are described below:

- The surface temperature maps are from an airborne thermal radiometer flown at 1500 m and 3000 m heights on 10 days through the growing season in 1997. The maps are calculated including the effect of emissivity.
- The leaf area index maps are based on the land cover map and field observations of vegetation height through the growing season. The vegetation height is related to the aerodynamic roughness and the roughness map vary per field through the growing season.
- The land cover and surface temperature maps are from an airborne thermal radiometer flown at 1500 m and 3000 m heights on 18 days through the growing season in 1997. The maps are available from 3000 m and 1500 m flight levels.
- The air temperatures and wind speeds are from the Arpège weather model and from radiosoundings at the Alpilles site.

RESULTS

Objective 1: Fulfilled as an operational model version is developed.

Objective 2: The K_B value ranges from 2 to 15 for Danish landscapes based on synthetic data results representative for typical roughness values. LAI and patch sizes (Hasager et al. 2002). In much work a K_B value of 2.3 is assumed valid for vegetated landscapes even though there is ample experimental evidence that it varies greatly. The results from the aggregation model supports the experimental evidence of K_B to be highly variable. For dense canopy, K_B approaches 2.3 but for sparse canopy, K_B increases significantly (figure 4). For the Alpilles site, K_B is found to range between 5 and 9 during the growing season (figure 5).

Objective 3: The sensible heat flux comparison between in-situ eddy correlation field observations and the aggregation model results are presented for 16 days in 7 fields.

- Arpège weather model inputs: rms 87 W m$^{-2}$ and bias -10 W m$^{-2}$ (fig 6)
- Radiosounding observations: rms 89 W m$^{-2}$ and bias -34 W m$^{-2}$ (fig 7)

CONCLUSION

A physically-based atmospheric modelling is now available for applied use where there is a need to upscale from a local point measure of sensible heat and water vapour flux to the larger scale in order to compare and verify the surface fluxes estimated from e.g. NOAA AVHRR (1 km), weather forecasting models (5-15 km) and hydrological models (grid and catchment).

The great advantages of the aggregation model is that no assumption has to be taken the K_B value when calculating the high resolution surface-flux maps.

References

- Hasager, C.B., Nielsen, N.W., Bougeard, H., Bøgeh, E., Christensen, J.H., Jensen, N.O., Rasmussen, M.S., Astrup, P. and Delwiche, E. 2002 SAT-MAP-CLIMATE project results. Ris-R-1310(EN), Roskilde, Denmark available online at:

Acknowledgments

WATERMED project funding (JRC-CT-1999-00013) and Danish Research Agency ESA-følgeforening 5006-60-4093, years 1999-2002 for the SAT-MAP-CLIMATE project.

DSAR (Danish Society on Atmospheric Research), Annual Meeting, Roskilde, 29 October 2002