Land cover, surface temperature and leaf area index maps from satellites used for the aggregation of momentum and temperature roughnesses

Charlotte B. Hasager*, Niels Otto Jensen*, Albert Olioso+

*Risø National Laboratory, Wind Energy Department, Roskilde, Denmark
+ INRA Bioclimatologie, Domaine Saint-Paul, Avignon, France

charlotte.hasager@risoe.dk, n.o.jensen@risoe.dk, olioso@avignon.inra.fr

ABSTRACT- A new concept for aggregation (area-averaging) of the roughness lengths for the momentum and sensible heat flux is described. The result are the so-called effective roughness values that are useful for the calculation of the surface energy balance and surface fluxes at larger scales e.g. in climate models, weather forecasts and hydrological modelling in heterogeneous landscapes. Typically a ratio between the momentum roughness, \(z_0 \), and temperature roughness, \(z_{0t} \), of the order of 1 or 10 is assumed. In the current work the roughnesses are directly calculated based on a set of linearized atmospheric flow equations. The equations are solved by Fast Fourier Transforms and iteratively solved in regard to stability (Monin-Obukhov similarity scaling), viscous sub-layer resistance and water roughness (Charnock). The microscale model calculates the area-average of \(<z_0> \) and \(<z_{0t}> \) for each large grid cell containing a number of local microscale patches of the size order of 30-1000 m. At this horizontal length scale the non-linear advective effects are highly significant. The results from a case study in the Alpilles area in France are presented. The model inputs are surface temperature maps, leaf area index maps and land cover maps based on high-resolution optical satellite or airborne scenes. The local roughness length for momentum is assigned per pixel based on land cover type and vegetation height. For bare soil, water and urban area there is a constant ratio between the local values of \(z_0 \) and \(z_{0t} \) but in vegetated areas the ratio is dependent upon vegetation type and leaf area index. Therefore \(<z_0> \) and \(<z_{0t}> \) are no longer proportional.

1 INTRODUCTION

There is a need to calculate the aggregated, i.e. non-linearly area-averaged, values of the roughness lengths for momentum and scalars because these effective values are necessary input to many regional and global scale atmospheric models used for weather prediction, climate simulations as well as in hydrological applications. Microscale heterogeneities, i.e. surface changes in the spatial domain of the order of 100 m to 1000 m, are very important for the total grid averaged surface stress and the grid averaged surface heat fluxes. The need to find practical and fast aggregation routines for the roughnesses is a well-known problem (e.g. Viterbo 1996, Sellers et al. 1996). Area-averaging the roughness by simple area-weighted averaging is not physically sound. This is due to the highly non-linear turbulent responses of the atmospheric flow.

Recently an objective, physically-based model that takes the turbulent response of the atmospheric flow into account for every roughness step change in the terrain was developed. The solution is numerical fast because the linearized flow equations are solved by Fast Fourier Transforms (Hasager and Jensen, 1999). The model is a so-called microscale surface-flux aggregation model in 2-dimensions in the horizontal domain.

Briefly described the microscale aggregation model needs input of high-resolution maps of roughness, land cover type, leaf area index (LAI) and surface temperature and a known wind speed, wind direction and air temperature at the computational level (e.g. the lowest level of the Météo France Arpège model at 25m). The flow equations include correction for atmospheric stability (Monin-Obukhov similarity scaling). This is iteratively calculated in every pixel. The friction velocity and sensible heat flux is calculated pixel-wise in the domain and area-averaged non-linearly to the desired grid cell size of low-resolution satellite data such as NOAA AVHRR 1 km grid cells (Wassenaar et al. 2002) or mesoscale climate models (Hasager et al. 2002a).

The model outputs are 1) the effective roughness length for momentum, \(<z_0> \) that always will be larger than a logarithmic average due to the added effect of non-equilibrium flow conditions, 2) the effective
scalar roughness length, \(<z_0> \) (for heat, water vapour and passive scalars) that generally will be smaller than for equilibrium conditions (Wood and Mason, 1991), 3) the friction velocity map, 4) the scalar scale map and 5) the sensible heat flux map. The maps have the same spatial resolution as the input maps.

It is seen as an advantage to calculate \(<z_0> \) directly instead of estimating it as a fraction of \(<z_0> \) for surface-flux calculation.

The logarithmic ratio between the two roughness values is named the Kármán constant (\(\kappa \)). For homogeneous surfaces with porous vegetation a value of 2.3 is often assumed valid (see Hasager, 1997), but worldwide experimental evidence shows a very large variation (e.g. Mölders et al., 1998).

The overall goal of calculating the effective roughness for scalar transport is to achieve very precise area-averages of the surface fluxes. For very large patches equilibrium conditions will apply, but for shorter horizontal length scales typical for instance in the Alpilles area in France, non-equilibrium conditions is expected to dominate the scalar surface fluxes.

2 THEORETICAL PART

In surface-layer profile relations it has been customary to take the roughness length for temperature \(z_{0t} \) equal to \(z_{0t} \) for momentum. However, especially if \(z_{0t} \) includes the effect of separated flow over orography this can lead to quite erroneous results for the heat flux. In the following we will assume that \(z_{0t} \) is the micrometeorological roughness, but as we will show below, \(z_{0t} \) is in general less than \(z_{0t} \). How much smaller depends on the type of the surface, and unfortunately also on the value of the friction velocity \(u_* \). Recently the formal dependence was presented by Jensen et al. (2002) and is described in detail in the following. Note, we reserve brackets e.g. \(<z_0> \) to signify spatial averages as opposed to \(z_0 \) for local values.

Per definition we have

\[
\frac{u_*/u_*}{u_*/u_*} = 1 - \kappa \left(\ln \frac{z}{z_0} - \Psi_M \left(\frac{z}{L} \right) \right)
\]

where \(u_* \) is the friction velocity, \(r_b \) is the aerodynamic resistance, \(u \) is the mean wind speed, \(\kappa \) the von Kármán constant (\(\approx 0.4 \)), \(z \) is the height above the displacement distance of the vegetation, and \(z_0 \) is the aerodynamic roughness.

The correction function, \(\Psi_M \), which depends on atmospheric stability expressed by the Monin-Obukhov length

\[
L = \frac{u_*^2}{\kappa \frac{\partial \theta}{\partial z}}
\]

is an empirically determined function (fitted analytical function). While \(r_b \) is the only limiting resistance for “deposition” of momentum, scalars\(^1\) such as temperature and humidity have an additional resistance \(r_b \) because they are also limited by molecular diffusion through the viscous sub-layers that blanket all surfaces. Thus for temperature

\[
u u_*(r_b + r_b) = \frac{\theta - \theta_0}{\kappa} = \frac{1}{\kappa} \left(\ln \frac{z}{z_{at}} - \Psi_M \left(\frac{z}{L} \right) \right)
\]

where \(\theta \) is the temperature at height \(z \), \(\theta_0 \) is the surface temperature and \(\theta_r \) is a scale for the temperature fluctuations (\(\partial \theta \)), \(u_* \) is the sensible heat flux, \(H \), \(z_{0t} \) is the roughness for temperature and \(\Psi_M \) is the Monin-Obukhov function for heat flux. Implicitly, eq. (3) assumes that the von Kármán constant as well as the displacement distance are the same for a scalar as for momentum. From eqs. (1) and (2) it follows that

\[
u u_*(r_b + r_b) = \frac{1}{\kappa} \left(\ln \frac{z}{z_{at}} - \left(\Psi_M \left(\frac{z}{L} \right) - \Psi_M \left(\frac{z}{L} \right) \right) \right)
\]

This equation establishes the intimate connection between \(r_b \) and \(z_{0t} \). In the following we shall neglect the subtle difference between \(\Psi_M \) and \(\Psi_M \) which then leads to the simple relationship

\[
z_{at} = \frac{z_{at}}{\exp(ML \cdot u_*)}
\]

For smooth surfaces \(z_{at} \) in eq. (4) are replaced by the molecular sub-layer thickness \(\nu/u_* \) and \(D/u_* \), respectively, leading to a fixed ratio between the momentum and temperature roughness and

\[
z_{at} = \frac{z_{at}}{\nu/u_*}
\]

where \(Pr \) is the Prandtl number (\(\approx 0.7 \)) equal to the kinetic viscosity \(\nu (\approx 1.5 \times 10^{-5} \text{ m}^2/\text{s}) \) divided by the molecular heat conductivity \(D (\approx 2 \times 10^{-5} \text{ m}^2/\text{s}) \). In practice this will occur only over water surfaces under low wind conditions (at about \(u_* < 0.1 \text{ m s}^{-1} \) or \(M/L \) less than 3.3 m s\(^{-1}\)).

\(^1\) although temperature and humidity have some influence on buoyancy they are for some practical purposes regarded as passive contaminants
The above implies that \(u^* r_b \) is constant for smooth surfaces. However, in general this product is not a constant but is in itself a function of \(u^* \). Hence it is immediately seen from eq.(5) that \(z_{ot} \) is not a property of the surface alone but depends on the flow.

2.1 Expressions for the additional resistance: \(r_b \)

As mentioned above \(u^* r_b \) is not in general a constant. It is customary to describe its variation in relation to the roughness Reynolds number

\[
Re = \frac{z_0 u^*}{v}
\] (7)

Figure 1, adapted from Garratt and Hicks (1973), shows such dependencies. The striking thing is the difference between rough surfaces consisting of bluff elements and rough surfaces consisting of plants (fibrous canopies).

The bluff body branch on the figure can be described by the relation

\[
\kappa f u^*_r = c Pr(Re)^{1/2}.
\] (8)

The types of land cover categories where this equation applies ranges from water bodies that are aerodynamically rough \((u^* > 0.1 \text{ m/s})\) over ice, snow and bare soils to cities. However, it turns out that for large \(z_0 \) values, the values of \(z_{ot} \) become unrealistically small \((e.g. 10^{-40} \text{ m})\). So it is concluded that the relation in eq. (8) is not realistic for large values of \(Re \). Therefore a modified expression is sought.

It is suggested to express \(Re \) as a function of the length scale of typical materials over which the development of laminar layers at the urban surfaces takes place, e.g. bricks, roof materials etc. In fact the method is similar in concept to the one applied for plant canopies by Jensen and Hummelshøj (1995). In other words, the laminar layers do not scale with the height of the buildings but rather with the smaller scale features of the urban surfaces, e.g. roof tiles, windows, etc.

\[
Re = \frac{lu^*}{v} \quad l = \begin{cases} z_0 & \text{if } z_0 < 0.05m \\ 0.05 & \text{if } z_0 \geq 0.05m \end{cases}
\] (9)

Thus by combining eqs. 5 and 9 we get

\[
\ln \frac{z_0}{z_{ot}} = c Pr \left(\frac{lu^*}{v} \right)^{1/2}.
\] (10)

The factor \(cPr \) in the above equation is assessed to be about 0.4.

In the MKS unit system we thus have the following practical expressions for non-vegetated land surfaces

\[
z_{ot} = \frac{z_0}{\exp(100\sqrt{z_0 u^*})} \quad \text{for } z_0 < 0.05 \text{ m} \] (11)

and

\[
z_{ot} = \frac{z_0}{\exp(22\sqrt{u^*})} \quad \text{for } z_0 \geq 0.05 \text{ m} \] (12)

Figure 2 shows the variation of \(z_{ot} \) as a function of \(z_0 \) for non-vegetated surfaces and it is seen that \(z_{ot} \) varies several orders of magnitude.

Over water the description is complicated by the fact that the roughness \(z_0 \) depends on \(u^* \) through Charnock’s formula (Charnock, 1955)

\[
z_0 = \alpha \frac{u^2}{g}\]

where \(g \) \((9.81 \text{ m s}^{-2})\) is the constant of gravity and \(\alpha \approx 0.015 \) but where the exact value actually depends on the wave age, the fetch length and probably also the water depth at least over shallow water.

For smooth water, i.e. for \(u^* < 0.1 \)

\[
z_{ot} = z_0; \quad z_0 = 0.1 \text{ m} u^* \] (14)

\[v \approx 1.5 \times 10^{-5} \text{ m}^2 \text{s}^{-1} \]
For rough water, i.e. for $u_* > 0.1$

$$z_{ot} = \frac{z_o}{\exp(100(z_o u_*)^{1/2})}; \quad z_o = 0.015 \frac{u_*^2}{g}.$$ \hspace{1cm} (15)

The plant canopy branch (see Figure 1) on the other hand has literally no dependence on Re. It was shown by Jensen and Hummelshøj (1995) that this is because the length scale z_o is not relevant. For example z_o for a forest is very large but what controls r_p, or more precisely the thickness of the viscous sub-layers is the dimensions l of the fibrous elements. For plant canopies Jensen and Hummelshøj (1997) give

$$r_p = c \frac{Pr}{LAI^{2/3}} \left(\frac{\mu}{\nu} \right)^{1/3}$$ \hspace{1cm} (16)

where LAI is the leaf area index, the Prandtl number has already been defined and c here is a constant of about 5. The length scale l is around 3×10^{-3} m for grass, grains and conifer forest and around 3×10^{-2} m for deciduous forest in leaves.

For vegetated land

$$z_{ot} = \frac{z_o}{\exp(5.85 \frac{LAI^{2/3} u_*}{u_*^{1/3}})}.$$ \hspace{1cm} (17)

Figure 3a and b show the variation of z_{ot} and kB^{-1} as a function of LAI for forest, respectively. The value of z_{ot} varies several orders of magnitude and for large values of LAI the value of kB^{-1} approaches 2.3.

3 THE AGGREGATION PROGRAMME

The new model development is an explicit calculation of the effective roughness for temperature $<z_{ot}>$. The approach is to apply a set of equations valid for local conditions for the different land cover types in the terrain for z_o and iteratively solve these.

The model runs on pc and the calculation for a 512*512 domain (e.g. a 15 km * 15 km region with an input of 30 m * 30 m resolution) is achieved typically in less than 10 seconds computational time. Figure 4 shows a schematic of the model components.

![Figure 4 Schematic of the surface-flux microscale aggregation model. The inputs are mean wind speed (u) and direction, air temperature (T_a) at the computational level and maps of surface temperature, land cover classes and LAI from satellite or airborne Earth observation data. The aerodynamic roughness map (z_o) is generated from an index list except for water bodies where the Charnock’s relationship is used. The index number and z_o-equation (ix-formula) are prescribed for each land cover type to provide the initial z_o map (eqs.11, 12, 14, 15 and 17). The model runs within the dotted line. The linearized atmospheric flow equations are solved by FFT. The output maps are the friction velocity ($u*$), the temperature scalar ($\theta*$), the roughness map (z_o) and the scalar roughness map (z_{ot}) all of which are found through iteration (indicated by the curved arrows). The iteration is due to the stability function (Monin-Obukhov similarity scaling) and the Charnock’s relationship. The final outputs are a map of the sensible heat flux (H) and the effective roughness for momentum $<z_{ot}>$ and for scalar transport $<z_{ot}>$ calculated directly.](image-url)
4 ALPILLES CASE STUDY

4.1 Experimental site and remote sensing data

The experimental site in the Alpilles area is located in the south of France (N43°47', E4°45') and the measurement campaign was from October 1996 to November 1997. The ground-based study involved surface-flux observations in various crops e.g. wheat, sunflower, maize, alfalfa (Olioso et al. 2002a). Other dominant land cover types within the 5 km by 5 km study area are orchards and forest.

The airborne observations include PoliDER and thermal scenes (Jacobs et al. 2002). The thermal scanner was flown at 1500 m and 3000 m height on a total of 18 days. The thermal images were calculated into radiant surface temperature maps including correction for emissivity and the roughness maps were produced from combining land cover information and vegetation height from field studies (Olioso et al. 2002b). The LAI maps were retrieved from airborne PoliDER NDVI data by neural network analysis (Weiss et al. 2002) and the land cover type map was retrieved from SPOT satellite scenes and field observations through a supervised classification analysis (Olioso et al. 2002b).

4.2 The meteorological data

The upper boundary atmospheric conditions are from local radiosoundings for three days and from the Arpège meteorological model for 18 days. The Arpège meteorological model results from Météo France may not represent the local area of the Alpilles very well due to the coarse horizontal grid resolution of around 30 km. However comparison of the Arpège grid air temperatures to the local radiosounding observations shows a good correspondance. The Arpège air temperatures are slightly higher than the radiosounding observations in all cases. This is reassuring as the radiosoundings are probed higher (53, 42 and 46 m) in the atmosphere than the Arpège grid level.

The local air temperatures at the 2 m level measured in a well-watered alfalfa field are also compared successfully to the Arpège temperatures (Fig. 5). In this well-watered alfalfa field H is low and the atmospheric condition – very locally – has near-neutral stability. Therefore it is to be expected that the 2m air temperature will be quite similar to the temperature aloft.

Furthermore the Arpège air temperatures are compared to the average and minimum surface temperatures in the airborne surface temperature maps. As all cases were acquired around noon in the growing season in the southern part of France, the average land surface temperature was always hotter than the average air temperature aloft (unstable conditions). The minimum surface temperature was determined from the NDVI-Ts minimum method.

The minimum surface temperature was on average around 10 °C cooler than the average surface temperature in the thermal maps. The minimum surface temperature in the maps was most often found in forest but sometimes in well-watered crops. In the case of near-neutral static stability the air temperature aloft would be close to the minimum surface temperature. The Arpège air temperature is lower (-1.6 °C) than the minimum surface temperature in only one case and within 2 °C in 11 cases out of 23 cases. This indicates that there typically is not local inversions (as expected) and that the minimum surface temperature may be found aloft at a (much) higher level in the atmosphere.

The wind speeds from the Arpège meteorological model, local field observations and radiosoundings in the Alpilles area are sucessfully compared in figure 6 at the times of thermal image data acquisition. The difference in wind speed between the Arpège data and field observations are on average 0.7 m s$^{-1}$ with a maximum of 3 m s$^{-1}$ and a standard deviation of 1.45 m s$^{-1}$.
Comparing wind speeds between Alpilles observations and Arpège results

![Figure 6](image)

Figure 6 Comparing wind speeds from the Arpège meteorological model at 25 m grid level, field observations at 2m and radiosounding observations at 53, 42 and 46m in the Alpilles area at the times of thermal image data acquisition of 1500 m and 3000m flight levels.

4.3 Microscale aggregation model results

Previously the microscale aggregation model has been run with a fixed ratio between the effective roughness lengths of 0.1, 0.01 and 0.001 on the Alpilles data set. It was found that a ratio of 0.01 (kB^{-1} of 4.6) gave the best correspondence between field based H observations and aggregation model results (Hasager et al. 2002b). The bias was near zero and the rmse around 80 W m$^{-2}$. The model results on H were better with input of radiosounding data indicating that these locally are more precise than the Arpège data.

The new aggregation model results on kB^{-1} is shown in figure 7. The directly calculated values of kB^{-1} range from 5 to 9, i.e. they are somewhat larger than previously found (kB^{-1} 4.6).

![Figure 7](image)

Figure 7 The kB^{-1} values calculated directly by the aggregation model for the cases in the Alpilles site.

The comparison between in-situ ground measurements of H and the new model results are graphed in figure 8a and b for input of radiosounding data and Arpège data, respectively. It is seen that there is a bias around 30 W m$^{-2}$ for both but that the rmse is lower for input of radiosounding (around 70 W m$^{-2}$) than for Arpège data (around 85 Wm$^{-2}$). This means that there is not obtained any significant improvement on the calculation of H compared to the results in Hasager et al. (20002b). It is however a great advantage that the ratio between the roughness for momentum and scalar fluxes did not have to be guessed.

![Figure 8](image)

Figure 8 a) Comparison of in-situ ground observations of sensible heat (H) flux to the new aggregation model results for local radiosounding input, b) for Arpège data.

The new H results are compared to the previous H model results (Hasager et al. 2002b) for all data points corresponding in space to ground flux observations and the comparison is shown in figure 9. It seems that two sets of observations each belonging to a different linear regression line exits. The results are preliminary as no in-depth study has been carried out yet to explain this result.
is very variable in areas of relatively low LAI values. Furthermore it demonstrates that the spatial variations of LAI are of great importance.

5 CONCLUSION

A new version of the physically-based surface-flux microscale aggregation model (original model described in Hasager and Jensen, 1999) is presented theoretically and applied on the Alpilles data set. The new development include the additional input of land cover type and LAI maps to the model in order to calculate not only the effective roughness for momentum [<z_0>] but also the effective roughness for scalars [<z_0_t>] directly. It is shown that the logarithmic ratio between [<z_0>] and [<z_0_t>] ranges from 5 to 9 for the 18 days studied at the Alpilles site based on airborne thermal images, LAI maps from airborne PolDER NDVI, land cover maps from SPOT and air temperatures, wind speed and wind direction from local radiosoundings and Arpège data. A value of kB^{-1} 2.3 is often assumed valid (in homogeneous terrain) but experimental data (from heterogeneous sites) have shown much larger values (e.g. up to 25). The new directly calculated values confirms the general experimental evidence that kB^{-1} is much larger than 2.3 in heterogeneous terrain.

Comparison of in-situ surface sensible heat flux from ground observations in various crops in the Alpilles area to the new aggregation model results shows a bias around 30 W m^{-2} and rmse around 70 W m^{-2} for radiosounding observation input and rmse around 85 W m^{-2} for Arpège data input. This is not significantly better that if assuming kB^{-1} 4.6 but the great advantage is that no assumption has to be taken. The results for the Alpilles site are preliminary as further investigation is on-going.

6 OUTLOOK

After ascertaining that the local H flux estimates are in accordance with in-situ observations, it is possible to area-average the flux at the 1 km grid scale comparable to NOAA AVHHR resolution. Sensible heat flux estimated from the microscale aggregation model at the larger scale may then be used as a guideline for the applicability of certain simpler surface–flux calculation methods at that scale.

Acknowledgements

The EC 5th framework WATERMED project funding ICA3-CT-1999-00015 for application of the aggregation model to the Alpilles data set and the SAT-MAP-CLIMATE project funding from the
Danish Research Agency, Space Research Grant 5006-00-0063, for development of the new model version is gratefully acknowledged.

REFERENCES

Weiss, M., Barbot, F., Leroy, M., Hautececer, O., Bacour, C., Prévot, L., Bruguier, N. 2002 Validation of neural net techniques to estimate canopy biophysical variables from remote sensing. *Agronomie* 22

Weiss, M., Baret, F., Leroy, M., Hautececer, O., Bacour, C., Prévot, L., Bruguier, N. 2002 Validation of neural net techniques to estimate canopy biophysical variables from remote sensing. *Agronomie* 22